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Abstract 
This paper demonstrates how token-level word space models (a distributional semantic 
technique that was originally developed in statistical natural language processing) can be 
developed into a heuristic tool to support lexicological and lexicographical analyses of large 
amounts of corpus data. The paper provides a non-technical introduction to the statistical 
methods and illustrates with a case study analysis of the Dutch polysemous noun 'monitor' how 
token-level word space models in combination with visualisation techniques allow human 
analysts to identify semantic patterns in an unstructured set of attestations. Additionally, we 
show how the interactive features of the visualisation make it possible to explore the effect of 
different contextual factors on the distributional model.   
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1. Introduction 
Compared to other linguistic disciplines, corpus-based analyses have a strong and long tradition 
in lexical semantics. Ever since the rise of philology and the emergence of large-scale dictionary 
projects in the 19th century, lexical semanticians have relied on contextual clues in attested 
language use to infer and organize the different senses and uses of a word. And while in the 
1950s syntax research turned away from usage data, the ideas of John Rupert Firth (1957), 
Zelig Harris (1954) and Warren Weaver (1955) led to approaches that saw real language data 
as the natural empirical basis for semantic descriptions. (For a more extended history of recent 
corpus-linguistic approaches to lexical semantics, see Geeraerts 2010: 165-178.) Initially, 
collecting and analysing corpus data was mainly manual labour, but with the advent of 
computers and ever larger electronic corpora, lexicologists and lexicographers now have 
enormous amounts of naturally occurring usage data available to base their descriptive work on. 
To analyse this wealth of data, scholars of lexical semantics widely use statistical analysis tools. 
More specifically, statistical methods have been introduced to facilitate two distinct steps in the 
analysis. On the one hand, statistical methods are used for identifying contextual clues in the 
corpus data that are indicative of a given lexeme’s meaning. These include co-occurring words 
(collocations) and syntactic patterns (colligations). On the other hand, statistical approaches are 
employed for classifying the occurrences of a lexeme into distinct usages and senses based on 
these contextual clues. 
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The first approach (i.e. the introduction of statistical methods for the identification of contextual 
clues) has been mainly associated with the British tradition in corpus linguistics. Pioneered by 
John Sinclair, this approach described lexical meaning as a function of the typical words 
(collocations) and syntactic patterns (colligations) that a word co-occurs with. Church and Hanks 
(1989) introduced statistical measures (t-score), to identify salient and informative collocations 
and colligations based on frequency distributions in text. These measures were subsequently 
refined (see Evert 2004 and Wiechmann 2008 for an overview), and they are now widely used 
in various linguistic subdisciplines. 
 
The second approach (i.e. statistical clustering of usages) has an outspoken presence in recent 
developments in Cognitive Semantics. Specifically, the so-called Behavioural Profile approach 
has introduced multivariate statistical techniques to classify occurrences of a word automatically 
into distinctive senses and usages, based on corpus evidence1. Gries (2006) uses hierarchical 
cluster analysis to group occurrences of the verb to run into different senses based on 
contextual features like transitive use or co-occurring spatial prepositions. Glynn (2010) applies 
Correspondence Analysis to visualise how occurrences of the verb to bother are grouped into 
distinct usages based on syntactic behaviour and semantic characteristics like affect. 
 
Interestingly, these statistical methods have been used independently of each other in these 
different traditions. Collocation-based analyses have statistically automated the identification of 
Dissociating grammaticality and word-order choice: A case study on object pronouns in German 
contextual clues but leave the classification of occurrences and typical contexts to manual 
analysis. Almost as a mirror image, behavioural profile analyses have statistically automated the 
classification of a lexeme’s occurrences and typical contexts into senses, but predominantly use 
datasets with manually coded contextual features as input. Table 1 classifies different 
approaches in lexical semantics by whether they identify contextual clues and senses manually 
or through statistical analysis. Whereas classical philological studies did both steps manually, 
collocation studies and behavioural profile analyses have each by and large automated one of 
the two steps but not both. 
 
In this paper, we will introduce word space models (a.k.a. semantic vector space models) as a 
logical extension of the statistical state-of-art in support of lexical semantic analysis: a technique 
that essentially combines collocational measures and multivariate methods in a systematic way 
to explore lexical semantic structure in large corpora, it completes the pattern that emerges from 
the introduction of statistical tools in corpus-based lexical semantics, as summarized in Table 1. 
 
The introduction of statistical methods to both steps in the data analysis process is, we think, 
not only a logical extension, but also a necessary one and this, for two reasons. First, additional 
support of statistical pattern finding techniques is the only way for lexicologists and 
lexicographers to cope with the data deluge that they face as they pursue their traditional 

                                                
1 Within the Behavioural Profile approach, there are also studies of lexical alternations, for which other 
multivariate methods like regression are available. However, since our focus is on the polysemy of 1 
lexeme, rather than the alternation between multiple lexemes for the same concept, we do not go further 
into these. 
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descriptive work. Given the available wealth of corpus data, it is simply unfeasible to hand-code, 
classify or describe thousands upon thousands of concordances of a lexeme. Statistical data 
analysis can help to take a representative sample of different usages for further scrutiny. 
Secondly, so-called Big Data also suggests an extension of the traditional focus of lexicological 
and lexicographical work: the Big Data environment allows to investigate trends and patterns 
that could not be studied in smaller corpora, e.g. the spreading of new words or new usages of 
existing words through social networks. Data mining techniques are indispensable to monitor 
this type of trends. As word space models are already the principal technique for handling 
lexical semantics in Computational Linguistics, we suggest that they can also provide support 
for the lexicologist and the lexicographer in their traditional and new descriptive tasks: for the 
traditional task of describing individual words or lexical fields, support is needed for staying on 
top of the abundance of data, and for the new task of describing trends and developments, 
appropriate quantitative techniques need to be developed. 
 
In this paper, we will focus on the first issue: how can a semantic space approach support the 
analysis of polysemy? It should be noted, though, that we are explicitly not presenting the 
semantic vector space approach as a ready-made, stable technique. Rather, we will argue that 
in its current, computational linguistic implementation, the technique is too much of a black box 
to be suitable for in-depth lexical analysis, and that it needs be extended with more interactive 
features to become truly useful for lexicological and lexicographical purposes. As part of work in 
progress, we will demonstrate how such features might take the form of visual analytics tools. 
In the next section we first give an informal discussion of the technique behind word spaces and 
how they model semantic structure and polysemy. We also discuss why these models are not 
transparent enough in their current form for lexicological research and how this can be 
remedied. Section three introduces a case study of a polysemous word in Dutch and 
demonstrates how word spaces in combination with visual analytics can be used to analyse the 
polysemy. Section 4 offers a general discussion and sets out a programme for future work. 
Section 5 wraps us with a summary and conclusion. 
 
 

 
Table 1 

2. Word Space Models: implementations 
Word Space Models were initially introduced in Cognitive Psychology to model lexical memory 
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(Landauer & Dumais 1997, Lund & Burgess 1996) and then further developed in Computational 
Linguistics, where they are now the mainstay of semantic modelling in statistical Natural 
Language Processing (see Turney & Pantel 2010 for an overview). Word Spaces, a.k.a. 
semantic vector spaces or distributional models of lexical semantics are a family of approaches 
and different subtypes can be distinguished. Two dimensions are relevant here. First, models 
differ with respect to the type of context that is taken into account to model word meaning. The 
context definition can be either document-based or word-based. When studying word x, the 
basic observation in a document model is the occurrence of x in the context of a given 
document as a whole; more fine-grained word-based models by contrast take their 
observational starting-point in the occurrence of x in the context of another word, optionally 
taking into account the specific syntactic dependency relation between x and its context words. 
Document-based models have proven to be most suited for modelling syntagmatic and 
associative relations, for instance between doctor and hospital or car and drive. Word-based 
models, and especially syntactically informed ones, are better at capturing paradigmatic 
relations like the near-synonyms hospital-clinic (Sahlgren 2006). Second, semantic vector 
spaces allows words to be studied at type level or at token level, i.e. we can try to distinguish 
one word from the other, or we can try to distinguish one usage of a given word from another 
usage of the same word. In the former case, we are interested in synonymy and related lexical 
relations; in the latter, we are interested in polysemy. In the context of this paper, we are 
obviously interested in the latter approach, but we have to start by explaining type-level models, 
because the token-level models are methodologically speaking an extension of the type-level. 
 
 

2.1 Type-level models 

The type-level semantic vector spaces can be most easily understood through an English toy 
example. Suppose we are interested in three target words: dog, cat and coffee. We have a 
corpus consisting of the following simple sentences: 
 
1. The dog barked loud at the passerby. 
2. The vet grabbed the dog by its neck. 
 
3. The cat was purring loud. 
4. The vet was scratched by the cat while grabbing it. 
 
5. Coffee tastes better than tea. 
6. The vet grabbed his cup and tasted his coffee. 
 
We now turn this corpus into a small frequency table where the target words form the rows and 
the context features are represented in the columns. We use the most simple model possible: it 
ignores syntactic relations and merely counts raw frequencies of the nouns, verbs and adverbs. 
Disregarding the syntax in this way is called the ‘Bag-of-Words approach’ in Information 
Retrieval. There are also more complex models that do take into account syntactic 
dependencies, but for the sake of simplicity we will not go deeper into these. In a real world 
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example with a large corpus, there will be far more context features (columns, typically several 
thousands) and the top frequencies will of course be much higher than 2. 
 

 
The co-occurrence frequencies can be interpreted as coordinates that situate dog, cat, and 
coffee in a high-dimensional semantic space (hence the name Word Space Model), where each 
context word is a separate dimension. Developing this geometrical metaphor, we can also 
calculate the distance between two words in this high-dimensional space to measure how far 
their meaning is apart. In practice, vector algebra is used to compute the similarity between the 
three target words (or rather their vector representation) by taking the cosine of the angle 
between them, which is a standard measure in distributional semantics (see e.g., Bullinaria and 
Levy 2007). Intuitively, the angle between two similar concepts (i.e. cat and dog) is expected to 
be smaller than that between different words (i.e. dog and coffee). In other words: dissimilar 
word distributions result in a lower cosine similarity value: 
 
cos(dog, cat) = 0.55 
cos(dog, coffee) = 0.27 
cos(cat, coffee) = 0.30 
 
The result corresponds to basic intuition: ‘dog’ and ‘cat’ are most similar while ‘dog’ and ‘coffee’ 
share the least co-occurrences. We also note that ‘dog’ is slightly less similar (0.27) to ‘coffee’ 
than ‘cat’ (0.30) because ‘dog’ co-occurs with ‘bark’ and ‘passerby’ while ‘cat’ and ‘coffee’ do 
not. 
 
The real world implementation of this technique will usually not use raw co-occurrence 
frequencies between the target word and its co-occurrences. High frequency words are not 
necessarily the most informative ones for the meaning of the target word. As in collocation 
studies, Word Space Models therefore use statistical measures of collocational strength to give 
a higher weight to context words that co-occur significantly more often than expected by 
chance. These high-weighted collocates are more informative for the meaning of the target word 
than others, irrespective of their raw frequency. In the example with the target word ‘dog’ for 
instance, the collocate ‘vet’ (as an abbreviation of veterinary), is semantically more closely 
related to the concept of ANIMAL than the word ‘grab’, even though it is less frequent. The set 
of collocational measures used in word space modelling is approximately the same as in 
collocational analysis. The weighting schemes we use for our present case study are based on 
Pointwise Mutual Information (PMI) and Log-Likelihood Ratio (LLR). The technical details of 
these measures are beyond the scope of this paper. Suffice to say that in general, weighting by 
collocational strength is a way to increment the importance of more informative context words 
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and at the same time lower the influence of collocates that do not have discriminatory properties 
for the target’s meaning. To calculate collocation strength and measure reliably whether two 
words co-occur more often than expected by chance, co-occurrence frequencies between a 
significant number of words must be collected from a corpus. In our toy example, we just impute 
the collocational weights calculated in a much larger corpus. Suppose vet gets a collocational 
weight of 4.3 if it co-occurs with dog, ‘3.5’ with cat and only 0.8 for coffee. When the cosine 
similarity is then recalculated, dog and cat will be more similar to each other than in the 
unweighted calculation and less similar than before to coffee. 
 
cos(dog, cat) = 0.87 
cos(dog, coffee) = 0.31 
cos(cat, coffee) = 0.32 
 
Typically, weighted co-occurrence vectors are constructed for a sizeable part of a language’s 
vocabulary as target words and a taking into account a few thousand mid-frequent context 
words. The table below shows how some of the weighted co-occurrence frequencies of our 
examples are situated in a matrix of 50.000 target words and 5000 context words. Calculating 
the cosine similarity between all pairs of target words results in similarity matrix with target 
words as both rows and columns and the cosine similarity between all target word pairs in the 
cells. The matrix has 1’s on the diagonal because each target word is completely similar to 
itself. The matrix is also symmetrical, with the same values above and below the diagonal, 
because the cosine similarity between word A en B is the same as between word B and A. The 
table below shows the cosine similarities for our examples in the type-level similarity matrix of 
50.000 target words by 50.000 target words. For each target word, it is now possible to look up 
the most similar word in the rest of the vocabulary. Assuming that very similar words are often 
near-synonyms, this type of word-by-word similarity matrices is typically used in computational 
linguistics for the task of automatic synonymy extraction. 
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2.2 Token-level models 

 
The type-level model, as is self-evident from its name, models the distributions on a word type 
level. This means that the resulting semantic vector is an aggregation of the individual 
occurrences in the corpus, making it hard to use it to study polysemy. Suppose we have a 
polysemous word which has a balanced distribution over its different senses. On a type-level, 
this word would be modelled as the average meaning, smoothing out the different contexts in 
which these different meanings are (supposedly) embedded. Simplistically put, a type-level 
approach acts as if each word has only one meaning – not a satisfactory perspective for lexical 
semantics. 
 
Token-level semantic vector spaces allow more sophisticated modelling on the level of the 
individual occurrences of a word. While we lose the ability to look directly at the aggregate level, 
these token-level models allow a more detailed insight in the semantic properties of the 
individual occurrences.  
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Suppose we compile a second toy corpus with three sentences containing the word cat , but 
now in one of them cat has the specialised meaning of a type of sailing boat: 
 

1. Blofeld was stroking the purring cat in his lap 
2. The black dog barked at the cat in the tree 
3. The cadet was sailing his cat against the wind 

 
In a type-based approach, the infrequent meaning of sentence 3 would simply be lost and go 
unnoticed in the aggregation over all occurrences of cat. In a token-based model however, we 
will model each occurrence separately and the boat-meaning can be distinguished from the 
more frequent animal meaning. 
 
Token-level models have been developed in computational linguistics since the mid 1990s for 
the task of automatic word sense disambiguation. By now a plethora of algorithms is available 
(see Agirre and Edmonds 2006, Navigli 2009, 2012 and Dinu et al. 2012 for an overview) but 
the method used in the our case study closely follows the seminal work by Hinrich Schütze 
(1998). Essentially, this approach models an individual token of a word by averaging over the 
type vectors of the context words. For example in sentence 1, the word ‘cat’ is modelled by 
averaging over the co-occurrence frequencies of the words ‘stroking’, ‘purring’ and ‘lap’. Let us 
explain this method in more detail. 
 
Suppose we create a matrix from our toy corpus of three sentences with a row for every 
occurrence of ‘cat’: 

 
Proceeding naively, we could still compute the cosine similarity between these tokens based on 
the raw frequencies in the table. However, note that token vectors #1 and #2 do not share a 
single co-occurring context word even though both usages refer the animal meaning. 
Consequently the similarity between all 3 tokens would be 0 and we would have no way of 
telling that token #1 and #2 share the same meaning whereas token #3 refers to another 
meaning of cat. In a real-world corpus this situation is even aggravated because the majority of 
informative context words will co-occur in only a limited amount of token-level observations. 
Suppose there are a 1.000 different context-words co-occurring with cat in the corpus and 
hence we have a matrix with the same amount of columns. If there are 10 words in the context 
window of each token (i.e. if each observation of cat is an utterance with 10 co-occurring 
words), this would mean that the remaining 990 columns contain a zero. This problem is called 
‘data sparsity’ and makes impossible to do any meaningful similarity calculation between 
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tokens: most tokens will have zero similarity, even though they share the same meaning. 
Schütze’s insight was that the problem of data sparsity can be solved by no longer looking 
directly at the first-order co-occurrences, but by replacing them with second-order co-
occurrences, that is to say, the co-occurrences of the co-occurrences. We do not only model 
tokens through their co-occurring context words, we also in turn model the context words 
through their collocates on the type level. In essence, we enrich the sparse token matrix by 
projecting it in the denser type matrix. 
 
To understand better how this works, let’s look again at the cat sentences from our toy corpus.. 
We now go through the steps in the construction of second-order token vectors.  
 
STEP 1 We start from the sparse vector for Blofeld-sentence with three 1s for the co-occurring 
context words (lap, purr and stroke)  

 
 
STEP 2 For each of these three context words (lap, purr and stroke) , we look up the type vector 
from the large type-level PMI-weighted co-occurrence matrix that we constructed in the previous 
section. 
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STEP 3 We add up the values for three vectors column by column and divide by three. We now 
have 1 vector that is an average of the type vectors for stroke, purr and lap. This vector can now 
said to represent the context in which cat occurred in the Blofeld-sentence. Because the token 
of cat is now modelled, not by its own co-occurring context words, but by the co-occurrences of 
the context words, we call this the second-order co-occurrence vector.  We have now a token 
vector that is projected in the type-level word space. 
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STEP 4 We repeat step 1 to 3 for the two other tokens of cat in our toy corpus.  
 
STEP 5 We now have matrix with a row for each token and the second-order co-occurrences as 
columns. Importantly, the token vectors in this matrix do not suffer from the sparsity problem 
any more because they have been construed in the much denser type-vector word space. Also 
the similarity between the context of token #1 and token #2 is now captured because the type 
vectors of the respective context words represent this similarity: the type vector of purr from 
sentence #1 and the type vector of bark from sentence #2 are similar because both strongly 
collocate with pet for example. This similarity has been propagated into the vectors of token #1 
and token #2. 

 
 
STEP 6 Thanks to this denser representations, we can now calculate cosine similarities 
between the tokens. The final outcome is then a token-by-token similarity matrix that does show 
that token #1 and token #2 are very similar and probably express the same meaning, whereas 
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token #3 is less similar and expresses another meaning. 
 

 
 
These 6 steps implement Schütze’s (1998) original model of second order co-occurrences for 
token vectors. In our case study, we modified this approach slightly by integrating an additional 
weighting in step 3 that is inspired by the inference process that a lexicologist (or any human 
interpreter for that matter) goes through when he or she disambiguates a polysemous item. 
Remember that in step 3 we averaged over the type-vectors of the context words of cat. In this 
averaging, each context word was treated on a par. The type-vector of lap had an equal share 
in the resulting second-order token vector as the type-vector of purr. However, it is clear that 
purr is a much better clue to the animal meaning of cat in sentence 1 than lap. After all, lap is 
polysemous itself and could also refer to rounds in a boat race. In other words, we would like to 
give purr a higher weight in the averaging over the context words’ type vectors than lap. 
Conveniently, we can look up the collocational strength between cat and purr as well as 
between cat and lap in our large type-level matrix. This reflects of how informative a context 
word is for modelling the meaning of cat. We now use this collocational strength measure (in 
this case Pointwise Mutual Information) as a weight in averaging over the type-vectors of the 
context words: 
 
STEP 3 WEIGHTED We multiply the values in the type vectors of each context word by the 
collocational strength of that context word with cat. We add up the values in the type vectors 
column by column and then normalise by dividing by the total weight. Compared to the 
unweighted second-order token vector, the second-order co-occurrences indicative of the 
animal-meaning will have a slightly higher value, whereas the other ones have slightly lower 
values.  
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The rest of the process remains the same: we repeat step 1 to 3 for all tokens resulting in a 
matrix of token vectors with second-order co-occurrences, which we can then turn into a token-
by-token similarity matrix. The final output of the distributional modelling is a square similarity 
matrix with as values the cosine similarity between each pair of tokens. In the next section, we 
discuss the typical application for token-level word space models in computational linguistics 
and why and how we develop a different approach that is more tailored to the needs of 
lexicologists and lexicographers.  
 

2.3 Turning a computational technique into a lexicological tool 

 
Token-level models have been developed in computational linguistics for the task of automatic 
word sense disambiguation (WSD). The aim of this task is to assign the correct sense label from 
a list of predefined senses to every occurrence of a polysemous item in a test set2 that is made 
publicly available as a benchmark. Usually the test set has been annotated with sense labels 
from WordNet. For this type of evaluation, the outcome of the token-level distributional model, 

                                                
2 These test sets are compiled by the computational linguistic community in the framework of regular 
WSD competitions, viz. the senseval en semeval series 
(http://aclweb.org/aclwiki/index.php?title=SemEval_Portal), at which the performance of different WSD 
systems is tested and compared. 
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the token-by-token similarity matrix, is fed to an automatic clustering algorithm that classifies the 
occurrences into a number of groups (usually the number of predefined senses that are 
assumed to exist for a given polysemous item). A cluster quality measure then quantifies to 
what extent the tokens that had the same predefined sense label were also assigned to the 
same cluster. Typically, this sort of evaluation is also used during the development phase of a 
WSD system: all the different parameters of a token-level model we discussed above (e.g. the 
context window around a token, the number of first and second order context words, the 
collocational strength measure, the similarity measure etc.) are varied and optimized to 
maximize the cluster quality measure. This allows all WSD system developers to compare their 
models to the same benchmark and the assumption is that this, in time, will lead to the best 
possible WSD system with the best possible parameter settings. It is then assumed that such an 
optimal WSD system cannot only be applied to the benchmark data but to an unlimited amount 
of text data.  
 
Successful as this joint research programme may have been in computational linguistics, we 
argue that there are two important reasons why this type of benchmark testing is not a suitable 
way to exploit the possibilities of token-level Word Space Models for lexicology and 
lexicography. First, lexical semantic scholars cannot assume the existence of predefined 
senses, and, second, benchmark testing only evaluates the output of a word space model and 
treats the actual identification process of semantic structure as a black box. Let us discuss 
these two points in further detail. First researchers of lexical semantics cannot assume they 
have a list of predefined senses at their disposal for obvious reasons: they are the specialists 
that have to identify senses and compile the sense inventory that computational linguists rely 
on. Moreover, it is not a priori clear that for any given polysemous items, there is a unique 
classification into distinct senses (Geeraerts 1993, Kilgarriff 1997, Hanks 2000). Rather, the 
common view in lexicology is that word senses are not stable entities in abstracto but that actual 
semantic content of a word, when used, is highly context dependent. For lexicographers, who 
necessarily have to make a choice meaning they lump together of split up in a dictionary, this 
means that the senses they should distinguish are highly dependent on the specific purpose or 
audience of a dictionary. In other words, each sense classification is only one of many possible 
perspectives on a lexeme’s meaning. Interestingly, the assumption of predefined senses is not 
an inherent flaw of token-level word space models. These models just calculate similarities 
between contextual usages and allow to group similar tokens bottom-up and independently of 
any a-priori sense labels. Because of this property, token-level semantic vector spaces are 
known in computational linguistics as automatic word sense induction techniques rather than 
automatic word sense disambiguation techniques. Nevertheless, the models are almost always 
benchmarked in a WSD task against predefined senses and the similarities are not assessed on 
their own merits nor on their ability to find interesting semantic patterns. The fact that they 
provide a means of bottom-up sense induction, is exactly why we think they provide a promising 
tool for in-depth lexical semantic analysis. Of course, a comparison of the semantic structure 
that these models capture with previous lexicological and lexicographical work is an interesting 
first step to assess whether the models “make sense” at all and can identify traditional sense 
distinctions. In our case study below, we will do such a first “sanity-check” with a set of manually 
disambiguated items. However, in the long term we foresee that different token-level models 
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with different parameter settings (e.g. type of context words) will offer different perspectives on a 
word’s semantic structure which a lexical semantician can then further study and interpret.  
 
The second incompatibility that benchmarking testing in computational linguistics shows with the 
needs and aims of lexical semantic research, has to do with the non-transparency of the sense 
induction process. The benchmark testing paradigm only assesses the output of a token-level 
model, viz. the clustering of word occurrences into possible senses. How this structuring of 
tokens into similar groups comes about and how different parameter settings influence the 
structure, usually remains inside the black box of the algorithm. Typically, a new parameter 
setting is based on an intuitive idea (e.g. function word do not contribute much to identifying a 
word’s meaning, so let’s remove them from the context word list). Whether this intuition proved 
correct is then evaluated in terms of an increase or decrease in the cluster quality measure for 
the WSD test set. An in-depth analysis of how a specific parameter setting was successful in 
some cases and not in others, is extremely rare in the computational linguistic literature. Yet, 
assessing different types of evidence for semantic structure in a large set of attestations of a 
lexical item, is exactly what lexical semantic research is all about. In other words, for token-level 
models to become a tool supporting lexical semantic analysis, a researcher must be able to look 
inside the black box and investigate whether e.g. syntactic patterns that lexical items occur in 
provide additional or different information about a word’s meaning, compared to co-occurring 
words in a fixed context window. Lexical scholars must be able to interact with the models and 
analyse the influence of different parameter settings. Incidentally, also computational linguists 
themselves are aware of this need for more in-depth evaluation of word space models. Baroni & 
Lenci (2011) point out that "To gain a real insight into the abilities of DSMs (Distributional 
Semantic Models, A/N) to address lexical semantics, existing benchmarks must be 
complemented with a more intrinsically oriented approach, to perform direct tests on the specific 
aspects of lexical knowledge captured by the models”. This seems to suggest a potential fruitful 
division of labour: lexical scholars, with their richer and theoretically more informed descriptive 
apparatus, can provide in-depth analyses of the semantic structure captured by Word Space 
Models, provided that computational linguists make intuitive interfaces available to investigate 
the computational models and thus offer lexical scholars a way to efficiently deal with ever 
larger data collections.  
 
How do we propose then to turn token-level semantic vector spaces into a tool that supports 
analysis of large datasets by a lexicographer or lexicologist? Remember that the output of our 
distributional model was a token-by-token similarity matrix, typically containing a few hundred 
tokens. It is quite evident that we can not just hand over such a matrix to a lexicologist, in the 
sense that the matrix as such will not help the researcher tremendously with the interpretation of 
the data. We therefore turn to the paradigm of visual analytics which aims to capitalise on the 
human mind’s ability to quickly spot visual patterns and converts large quantitative data sets into 
a visual representation. Analysing this visual representation then hopefully allows to identify 
meaningful patterns in the data much easier and faster than pure number crunching. In the 
present study the quantitative dataset at hand is our token-by-token similarity matrix. The 
visualisation technique we will use, is Multidimensional Scaling (MDS, Cox and Cox 1991), a 
dimension reduction technique that is widely used in cognitive psychology and that is explicitly 
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developed to visualise and interpret similarity matrices. In this case, we use the technique to 
reduce the high-dimensional token by token similarity matrix to a two dimensional plot that tries 
to render the similarities as faithfully as possible: two tokens that are highly contextually similar 
will be close together in the plot, whereas dissimilar tokens will be far apart. This way, a lexical 
analyst can start exploring visually which semantic structure is captured by the distributional 
model. We will illustrate this technique in the case study in the next section: by additionally  
colour-coding the MDS plot and making it interactive, the user can not only explore the 
similarities between the tokens, but also look further into the context features that caused the 
distributional model to detect this specific semantic structure. 
 
Let us finish this section by pointing out that we are not the first ones to apply Word Space 
Models to typical lexicological and lexicographic topics of interest:  A number of studies have 
tried to identify lexical semantic change (Sagi, Kaufmann & Clark 2011, Cook & Stevenson 
2010, Gulordava & Baroni 2011). Peirsman et al. (2010) study lexical variation between different 
varieties of the same language. However, all these studies stay within the benchmark testing 
paradigm and try to replicate some previously identified semantic changes or lexical variants. 
The latter just become a special type of test set. More related to our approach is the work by 
Rohrdantz et al. 2011 and Rohrdantz et al. 2012, who also use a Word Space Model to do a 
bottom-up analysis of lexical semantics in combination with visual analytics to bring the 
semantic patterns to light that the model captured. However, also this work takes mainly a 
computational perspective and wants to demonstrate the power of visual analytics without 
targeting a specific audience of researchers. By contrast, starting with Heylen Speelman & 
Geeraerts 2012 and continued in Wielfaert, Heylen & Speelman 2013 and the current paper, we 
have initiated a research programme that takes explicitly a lexicological perspective rather than 
a computational linguistic one. We want to turn Word Space Models into an analysis tool for 
lexicology (and lexicography), rather than turning lexicographic data into a test data set for 
computational linguistics. In this respect we link up with the tradition of turning quantitative 
corpus linguistic measures, like collocation and colligation, into usable tools for scholars of word 
meaning (e.g. Scott 1996, Kilgarriff 2004, Anthony et al. 2011) 
 

3. Semasiological case study in Dutch 
 

To illustrate the current possibilities of Word Space Models as introduced in the previous 
section, we present a case study of the Dutch noun monitor, which happens to be a textbook 
case of polysemy. We collected a random sample of 199 monitor tokens from our corpus and 
constructed a bottom-up, usage-based analysis of the senses that occur in the sample. 
 
The corpus for our case study consists of Dutch newspaper materials from 1999 to 2005. For 
Netherlandic Dutch, we used the 500 million words Twente Nieuws Corpus (Ordelman, 2002), 
and for Belgian Dutch, the Leuven Nieuws Corpus (a.k.a. Mediargus corpus, 1.3 billion words). 
The models require that choices are made for the parameter settings discussed above 
(collocational strength measure, similarity measure, co-occurrence window around the tokens). 
In the models shown here, we opted for the settings that were shown to be optimal in our 
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previous studies (Peirsman et al., 2008; Heylen et al., 2008; Peirsman et al., 2010); for a more 
technical account of the parameters that were used for the case studies, see Wielfaert, Heylen 
& Speelman (2013). 
 
The main reading of monitor in Dutch is comparable to the English meaning, namely ‘(computer) 
screen’. In the sample, monitor is also used to refer to a person supervising and guiding a group 
of children in the context of organized playground activities, summer camps, sports activities 
and the like. In this reading, monitor is often found in compounds like jeugdmonitor (‘youth 
monitor’) or speelpleinmonitor (‘playground monitor’).3 
 
We applied a token-level Word Space Model of the type described in section 2.2 to the 
randomly selected sample of 199 tokens. The 199-dimensional similarity matrix was then 
reduced to just two dimensions and visualised in a scatter plot with Multidimensional Scaling. 
Theoretically speaking, the polysemy of monitor should be visible as two clearly separated 
clusters or ‘token clouds’, as we prefer to call them. The rationale behind this is that in the case 
of monosemy (i.e. the situation in which all the observations of a word represent the same 
meaning), the tokens should be relatively close to each other as their collocates are strongly 
related. However, in the case of polysemy (or homonymy, for that matter) distances should be 
larger and at least in theory large enough for separate clouds to appear. 
 

                                                
3 Van Dale, the main dictionary of contemporary Dutch, mentions 2 other senses that are not present as 
such in our monitor data, namely studiebegeleider (‘study supervisor’) and iemand die toezicht houdt; 
waarnemer (someone who supervises; observer). http://vandale.nl/opzoeken?pattern=monitor&lang=nn 
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Figure 2 
 
The results that we obtain for monitor, as represented in Figure 2 do not at first sight reveal 
clear clusters. However, as discussed in section 2.3. it might be good first step in the exploring 
the possibilities of token-level spaces by comparing them with an existing sense classification. 
We therefore manually disambiguated the tokens and colour-coded the different senses in the 
plot. The grey dots represent the screen sense and the black dots refer to the youth leader 
sense. Now it is more clear that the clustering technique does appear to be rather successful: 
each of the two senses is represented on the opposite side of the first dimension (the x-axis). 
While this clearly establishes that a semantic vector space approach can indeed be useful as a 
preliminary semantic classification tool for descriptive lexicology and lexicography, additional 
features and procedures may be implemented to enrich the use of the method. 
 
As a first extension, we made the plots interactive and linked the dots in the representation to 
the actual examples. In this way, the initial attestations on which the representation is built can 
be readily accessed: a quick manual scanning of the data helps the researcher to interpret the 
emerging structure. In the figure below, we see that one dot is highlighted by clicking and on the 
right-hand side, the concordance appears: 
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As a second extension, we provided the option to give the data points in the plot a size that 
reflects the informational value of the collocates in the corresponding utterance. Remember that 
in section 2.2, we explained that not all context words are equally informative to infer the 
intended meaning of a polysemous item (purr is more informative for the animal meaning of cat 
than lap) and that we tried to mimic this heuristic in our model by assigning different weight to 
context words based on collocational strength. In the plot shown here, the size of the dots is 
relative to the maximum weight that was assigned to one of the context words of the respective 
token. In other words: if the data point is represented as a small dot in the plot, the context 
words of that specific monitor token have low weights, and there was not much of a clue in the 
context to classify the token. Conversely, the bigger data points contain collocates that appear 
to have a high discriminative value. From a descriptive point of view, these tokens will be the 
primary candidates for manual scrutiny. The weights of the context words are integrated in the 
concordance by putting them in brackets behind each context word. In the plot above the 
concordance of the highlighted token reads: 
 

In [Limburg(0.0)] [heb(0.0)] [je(0.48)] [liefst(2.05)] [77(0.0)] [speelpleinwerkingen(6.61)] 
[waarmee(1.34)] [meer(0.0)] [dan(0.45)] [3000(2.28)] monitoren [een(0.58)] [hele(0.17)] 
[zomer(1.6)] [lang(0.0)] [zoet(0.0)] [zijn(0.02)]. [Naast(0.84)] [die(0.0)] [georganiseerde(0.0)]... . 

 
In Limburg there are no less than 77 playground initiatives that keep more than 3000 youth 
leaders busy for a whole summer. Next to these organised… 
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This is an example of a well classified monitor token with the ‘youth leader’ meaning as it is 
surrounded by other ‘youth leader’ tokens. From the concordance, we can see that the 
weighting of context words also works  as intended: the highly informative context word 
speelpleinwerkingen (playground initiatives) get the highest weight (6.61) and makes sure the 
token is appropriately positioned. 
 
To illustrate the advantages of the interactive plot, we look deeper into a few tokens that were 
selected on the basis of different they show, either in terms of weight or position of the token in 
the plot. The selected tokens have been marked with a circle and a reference number in the 
figure below.  

 
      
The first token, belonging to the screen sense, is situated at the top of the plot and could be 
considered as an outlier as it is not surrounded by any tokens of either sense. The full context of 
this token is the following, directly followed by its translation: 
 

TOKEN #1 
Galerie Akinci is door de Zwitserse Emmanuelle Antille ingericht als woonkamer , waar je in een 
luie stoel [kunt(0.56)] [kijken(1.09)] [naar(0.57)] [haar(0.0)] [video-installatie(5.43)] Reflecting 
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[Home(0.0)] . [Behalve(0.0)] [op(0.79)] monitoren [zijn(0.02)] [de(0.34)] videobeelden [ook(0.0)] 
[levensgroot(0.0)] op de [wand(0.0)] [geprojecteerd(0.0)] . De kunstenares , die zelf de hoofdrol 
speelt , lijkt hierdoor haast lijfelijk aanwezig . 

 
Galery Akinci has been furnished like a living room by the Swiss Emmanuelle Antille, in which you 
can look from an easy chair to her video installation Reflecting Home. Apart from the displays, the 
video images are also projected life-size on the wall. The artist, who plays the lead role herself, 
seems to be physically present. 
 

The highest weighted collocates for this token are: video-installatie (5.43) ‘video installation' and 
kijken (1.09) 'to look'. There are a number of things we can learn about how our distributional 
model works. First, despite the high weight of genuinely informative collocates for the meaning 
of this token, it has been plotted at a large distance of the tokens that are semantically related, 
namely the ‘display’ tokens. One hypothesis is that the outlier position can be attributed to the 
word video-installatie (video installation) because it is a low frequent word in our corpus and 
does not contribute enough relevant second-order collocates to the token vector in order to 
detect the similarity with the other ‘display’ tokens. Also, the high collocational association 
between video-installatie and monitor might be an artefact of the pointwise mutual information 
measure which has been shown to have a bias towards low frequent events. Secondly, some 
informative context words like videobeelden (video images) and geprojecteerd (projected) get a 
zero weight. Clearly the weighting function is not optimal yet. In any case, the interactive 
inspection of the plot has given us valuable information about how to improve the distributional 
model, which we would never have obtained from one evaluation measure in a benchmarking 
testing procedure. 
 
The second selected token also represents the ‘display’ sense, and it is situated with a handful 
of other ‘display’ tokens at the left side of the plot. The full concordance is as follows:  
 

TOKEN #2 
" Daar stelden de daders vast dat er weinig te rapen viel , " zegt zaakvoerder Louis . " Ze pakten 
[dan(0.07)] [ook(0.0)] [alleen(0.37)] [wat(0.01)] [kabels(0.0)] , [een(0.58)] [paar(0.71)] 
[klavieren(5.29)] [en(0.59)] monitoren [mee(0.49)] . [Het(0.0)] [gros(3.03)] [van(0.16)] [de(0.34)] 
[monitoren(5.58)] [lieten(0.0)] [ze(0.25)] [staan(0.9)] . 

 
“There, the culprits realised there was little to steal,” says business owner Louis. “They took just 
some cables, a couple of keyboards and monitors with them. The majority of the monitors they 
left alone. 

 
This token has a particularly interesting collocate, namely monitor itself, which has also been 
assigned the highest weight (5.58) among the target’s collocates. As it turns out, we find pairs of 
self-co-occurring monitor tokens in this part of the plot. This might suggest choosing a different 
strategy for dealing with repetitions in the corpus. For a lexicologist, the main cue for the token’s 
meaning would be klavier ‘keyboard’, which is correctly assigned a fairly high weight (5.29) 
 
The third case is a so-called ‘misclassifications’, namely a ‘youth leader’ token which is in the 
middle of the plot, an area populated with ‘display’ tokens. Nevertheless, it is not hard to identify 
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the main reason for this: 
 

TOKEN #3 
Als 14-jarige kwam [ik(0.0)] [voor(0.0)] [het(0.0)] [eerst(0.0)] [naar(0.57)] [Zwitserland(0.0)] . 
[Later(0.0)] [werd(0.23)] ik monitor [en(0.59)] [nu(0.0)] [coördineer(0.0)] ik [hier(0.46)] [de(0.34)] 
[hele(0.17)] [logistiek(0.0)] . " Het gigantische Palace Hotel , waarin bij ons bezoek 800 jongeren 
verblijven , werd meer dan honderd jaar geleden gebouwd door een Limburgse baron , maar ging 
1 jaar na de opening al op de fles . 
 
As a 14-year-old I came for the first time to Switzerland. Later I became youth supervisor and 
now I coordinate the whole logistics. The gigantic Palace Hotel, where during our visit 800 
youngsters reside, has built more than hundred years ago by a Limburgian baron, but went 
bankrupt just one year after the opening. 

 
None of the informative collocates has been weighted. The best cues in this case would be 
Zwitserland (Switzerland), which is a country where traditionally many summer and winter 
camps for Belgian children are organized, and cöordineer (coordinate). Again, this suggests 
changes to the weighting scheme. 
 
The final example is a misclassification similar to #4, but for another reason: 
 

TOKEN #4 
Al 30 jaar [zoeken(2.35)] [wetenschappers(0.0)] [naar(0.57)] [de(0.34)] [oplossing(0.0)] 
.[Risicobaby's(9.36)] [worden(0.23)] [aan(0.35)] de monitor [gelegd(1.51)] [om(0.09)] 
[ouders(1.41)] [te(0.0)] [waarschuwen(0.0)] [bij(0.19)] [adempauze(0.0)] [tijdens(0.59)] de 
[slaap(0.0)] van hun kindje . Dat monitorsysteem is geïntroduceerd door dokter Alfred 
Steinschneider . 

 
For 30 years scientists have been looking for the solution. Risk baby’s are attached to a monitor 
to warn their parents in case of a breathing pause during the sleep of their child. That monitoring 
system has been introduced by doctor Alfred Steinschneider. 

 
The word risicobaby (‘risk baby’) gets a particularly high weight while the other collocates within 
the context window have a fairly low weight. As a result, risicobaby is the collocate responsible 
for its odd position. risicobaby occurs only 12 times throughout our corpus and apparently its 
type vector is more associated to the ‘youth leader’ than to the ‘display’ sense. Admittedly, the 
monitor in this token does not refer to a prototypical screen or display, but rather to a medical 
device which monitors the physiological parameters of a sleeping infant. These parameters are 
usually visualised on a display part of the device, which makes that monitor is in this case a 
metonymical extension (more specifically: a pars pro toto) of the prototype. 
 
 
 

4. Discussion and future work 
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In the case study we looked at an example of polysemy in Dutch and used Word Space Models 
in the attempt to automatically apply collocational analysis on a large-scale corpus. The Word 
Space Models’ output is made visually accessible by plotting it in two dimensions and adding 
colour-coding for the two manually disambiguated senses of monitor that occur in our sample. 
We argue that the technique is promising because it provides linguistically interpretable 
structures. Nevertheless, this application of visualised distributional modelling is work in 
progress and the technique will have to be further refined and enriched. In what follows, we 
discuss some of the possible avenues for future improvements that we consider and have 
experimented with.. 
  
First, the occurrences of monitor in the sense of ‘display’ we modeled are not a monolithic block, 
but rather show an internal structure that is not yet revealed in the analysis. In other words, we 
should try to increase the granularity of the analysis. Not only is monitor used to refer to screens 
which are attached to a computer or a video source, but also for more metonymical uses. This 
ranges from a military context where green screens are used to monitor a situation, to devices 
which keep an eye on the physiological parameters of a baby to prevent it from sudden death 
infant syndrome (see misclassified token #4 above). We also observed occurrences in which 
monitor still refers to the more prototypical display which shows video images, but in the context 
of theatre, film and television. The monitor on which the actors can see live what is happening 
on the theatre stage or directors who look at what is being filmed on a small screen. 
Nevertheless, these instances are all part of the broad ‘display’ sense. A sample of 200 tokens 
is simply not large enough to have enough tokens that represent such specific uses. Therefore, 
we should explore other heuristics to select a sample which represents a specific use of the 
target word instead of naively drawing a random sample from the corpus. A possibility would be 
to apply a coarse grained clustering to all tokens first and then to the MDS visualisation per 
cluster in order to get a more fine-grained picture of set of related usages. 
 
Second, up until now we have looked at the Dutch word monitor from a semasiological point of 
view. In other words: we looked at the occurrences of monitor and discriminated the two main 
concepts it refers to in our data. However, we could also follow the opposite direction (from 
concept to instantiation) and use an onomasiological profile to find the words that refer to a 
single concept, in casu BEELDSCHERM (‘display’). Ruette, Speelman & Geeraerts (2014) 
automatically detected a number of near-synonyms which all refer to displays in Dutch: 
beeldscherm (display), computerscherm (computer screen) and monitor (monitor).  
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In Heylen, Speelman & Geeraerts (2012), we plotted a random sample of tokens belonging to 
these three lexical items in the same two-dimensional MDS representation of a token-level 
semantic vector space. The monitor tokens have the lightest shade whereas instances of the 
near-synonyms computerscherm and beeldscherm are colour-coded in darker shades. In the 
right hand side of the plot we notice that tokens of the three near-synonyms are interspersed. 
This pattern corresponds to the foreseen structure of near-synonymy: words with the same 
meaning will occupy the same area of semantic space. However, on the left-hand side of the 
plot, we see there is an area with only (light-shaded) monitor tokens. The interactive exploration 
of these tokens and their linked concordances learns that these are indeed the monitor tokens 
with the ‘youth leader’ meaning. This illustrates how looking at a polysemous item from an 
onomasiological perspective can quickly reveal that the item has usages that do not fall under 
the concept of the onomasiological profile. This is an extra heuristic to identify polysemy  
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Third, next to onomasiological variation, Word Space Models also allow to investigate different 
sorts of lectal variation. This is extremely useful from a descriptive lexicographical or 
lexicological perspective, because it provides a way of assigning variety-specific labels to the 
meanings of a word. Our corpus consisted of a Belgian and Netherlandic newspaper material, 
and therefore we can look into regional variation. The figure above shows a plot of the same 
tokens as the previous one, but now the tokens are colour-coded by country with the darker 
shade for Belgium and the lighter one for the Netherlands. We can now see that the part of the 
plot that was previously exclusively populated by monitor tokens with the ‘youth leader’ 
meaning, is also exclusively Belgian. This correctly shows that the ‘youth leader’ meaning is 
indeed typically Belgian. Not shown here is that we can also track tokens back to the newspaper 
they were extracted from and that colour coding by newspaper shows that the ‘youth leader’ 
monitor tokens originate almost exclusively from the Belgian popular (tabloid-like) newspapers. 
These newspapers are in general more region-specific than the quality newspapers, which 
results in reports on local youth matters such as summer camps or youth movements. In a 
further stage, it could be interesting to look at the language register in the regional sections in 
contrast with the national articles. 
 
Fourth, we are developing a systematic way of coping with the many different parameters that 
can varied in Word Space Models for Lexical Semantics. On the one hand this is a strength of 
the model: the different parameter settings give different perspectives on the multifaceted 
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phenomenon of lexical semantics. On the other hand, the parameter-richness also poses 
methodological challenges: we cannot expect a researcher to look for each lexical item at 
hundreds of different plots, all generated with slightly different parameter settings. As mentioned 
before, although token-level word spaces carry the promise to become a completely bottom-up 
analysis tool for lexical semantics, we are currently in a phase where try to get a grasp of the 
effects of different parameter settings through a comparison of the output with manually 
disambiguated data, like the monitor dataset. Therefore, we are currently working on a 
systematic and quantifiable way to compare large numbers of different parameter settings 
relative to the manual disambiguation. We systematically vary parameter settings and 
quantitatively measure the model’s agreement with the manual disambiguation. Intuitively this 
evaluation measure boils down to the following: tokens belonging to the same sense should be 
closer to each other in vector space than to tokens with a different sense. This way, we will get 
a picture of which parameter settings capture truly different semantic structure and which 
settings are more or less equivalent. Of course, this type of parameter sweep has to be done for 
more than one lexical item (not just monitor) to avoid overfitting and to see whether different 
semantic classes of words might require different parameter settings. 
One parameter that we mentioned before and that we are already looking into is the weighting 
of context words by their collocational strength with the target lexeme. In collocation studies, 
different collocation measures were introduced, e.g. Log-Likelihood Ratio or Pointwise Mutual 
Information, that each have their own advantages and disadvantages. These properties of 
course also play a role when these measures are used as a weighting scheme in our models.   
 

5. Conclusion 
In this paper, we gave a non-technical introduction to Word Space Models, and more 
specifically, to token-level models based on second order co-occurrences. We argued that 
these models are a logical extension to the set of corpus-linguistic tools available to lexicologists 
and lexicographers, because they allow for a systematic combination of two existing traditions in 
quantitative corpus-based lexicology: on the one hand, statistical methods for finding contextual 
clues to word meaning (collocation analysis), and other other, statistical methods for grouping 
attestations into senses ('behavioural profile' analysis). We suggested that such an extension of 
the lexicological tool set is necessary for at least two reasons: to manage the increasing 
amounts of data to be addressed by traditional descriptive lexicology, and to implement the new 
types of trend analysis that are made possible by ‘big data’. However, we also pointed out that a 
number of adaptations are necessary before token-level word space models (a technique that 
was first formulated in computational linguistics) can be fruitfully applied to in-depth analyses of 
lexical semantics. As part of an ongoing research programme that explores bottom-up statistical 
approaches to lexical semantics and that is geared precisely to customizing the computational 
linguistic methods to the needs of corpus-based lexicology and lexicography, we presented a 
case study of the Dutch polysemous word 'monitor'. With the case study, we demonstrated how 
token-level word space models can be usefully combined with visual analytics techniques; we 
showed how this combination of techniques yields a first overview of the different usages that 
are present in a set of attestations, and how it can lead to a better insight into the underlying 
mechanisms that allow distributional models to capture semantic structure. Although token-level 



28 

Word Space Models are currently far from providing a ready-made technique for lexical 
analysis, the case study delivers a convincing proof of concept that such models constitute a 
promising path for quantitative corpus-based semantics to pursue. 
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